	P	ine Hill Public S	Schools Cu	rriculum		
Content Area:		Science				
Course Title/ Grade Level:		AP Physics 2 / Gr.	AP Physics 2 / Gr. 11 & 12			
Unit 1:	Electrostatics		Duration:	7 week		
Unit 2:	Electric Circuits		Duration:	2 week		
	Benchmark Exam	ı #1	Duration:	$1 \ day$ (Administered on the 9th instructional Week)		
Unit 2:	Electric Circuits		Duration:	3 week		
Unit 3:	Magnetism and E Induction	Magnetism and Electromagnetic Induction		5 weeks		
Unit 4:	Thermodynamics	3	Duration:	1 weeks		
	Benchmark Exam	1 #2	Duration:	$1~day$ (Administered on the $18^{ m th}$ instructional Week)		
Unit 4:	Thermodynamics	Thermodynamics		3 weeks		
Unit 5:	Fluids	Fluids		2 weeks		
Unit 6:	Geometric and Physical Optics		Duration:	4 weeks		
	Benchmark Exam	ı #3	Duration:	1~day (Administered on the 27th instructional Week)		
Unit 6:	Geometric and Physical Optics		Duration:	2 weeks		
Unit 7:	Quantum, Atomic, and Nuclear Physics		Duration:	6 week		
Unit 8	Astrophysics and	Astrophysics and Cosmology		2.5 week		
Unit 9	Final Project		Duration:	2.5 week		
	Benchmark Exam	1 #4	Duration:	$3~\mathrm{day}$ (Administered on the 36th instructional Week)		
BOE App	roved date:	06/29/16				

Pine Hill Public Schools Science Curriculum				
Unit Title: Electrostat	ics (Ch's16,17	7) Unit #1		
Course or Grade Leve	I: AP Physics 2	2 Length of Time: 7 weeks		
NGSS Performance				
NGSS Performance Expectations (PE's)	 HS-PS1 proper energy HS-PS1 simple trends proper HS-PS1 compar of elect 2-1. motion macros HS-PS2 that the no net HS-PS2 Gravita and ele HS-PS2 that an magne HS-PS3 macros associa with th HS-PS4 regard waves HS-PS4 digital HS-PS4 idea th model useful HS-PS4 radiati HS-PS4 	 1-1. Use the periodic table as a model to predict the relative rties of elements based on the patterns of electrons in the outermost y level of atoms. 1-2. Construct and revise an explanation for the outcome of a e chemical reaction based on the outermost electron states of atoms, s in the periodic table, and knowledge of the patterns of chemical rties. 1-3. Plan and conduct an investigation to gather evidence to are the structure of substances at the bulk scale to infer the strength trical forces between particles. Analyze data to support the claim that Newton's second law of n describes the mathematical relationship among the net force on a scopic object, its mass, and its acceleration. 2-2. Use mathematical representations to support the claim te total momentum of a system of objects is conserved when there is force on the system. 2-4. Use mathematical representations of Newton's Law of atom and Coulomb's Law to describe and predict the gravitational ectrostatic forces between objects. 2-5. Plan and conduct an investigation to provide evidence n electric current can produce a magnetic field and that a changing etic field can produce an electric current. 3-2. Develop and use models to illustrate that energy at the oscopic scale can be accounted for as a combination of energy iated with the motions of particles (objects) and energy associated he relative positions of particles (objects) and energy associated he relative positions of particles due to the interaction. 4-2. Evaluate questions about the advantages of using a ltransmission and storage of information. 4-3. Evaluate the claims, evidence, and reasoning behind the hat electromagnetic radiation can be described either by a wave or straveling in various media. 4-4. Evaluate the validity and reliability of claims in published tals of the effects that different frequencies of electromagnetic ion have when absorbed by matter. 4-5. Communicate technica		
	technological devices use the principles of wave behavior and wave			
	interactions with matter to transmit and capture information and en			
Cross Cutting Concept	.S	Science and Engineering Practices		
⊠ Patterns		⊠Asking questions and defining problems		
⊠Cause and Effect		⊠Developing and using models		
\boxtimes Scale, Proportion, and Q	uantity	⊠Planning and carrying out investigations		
Systems and Systems M	odels	⊠Analyzing and interpreting data		

□Energy and Matter in Systems		⊠Using mathematics and computational thinking	
\Box Structure and Function		⊠Constructing explanations and designing solutions	
□ Stability and Change in Systems		□Engaging in argument from evidence	
		⊠Obtaining, evaluating, and communicating information	
Nature of Science (NOS)			
⊠NOS-Science is a Way of	Knowing	Nature of Science (NOS)	
⊠NOS-Scientific Knowled	ge Assumes an	Scientific Investigations Use a Variety of Methods	
Order and Consistency in I	Natural	Scientific Knowledge is Based on Empirical Evidence	
Systems		Scientific Knowledge is Open to Revision in Light of New	
NOS-Science is a Human	n Endeavor	Evidence	
⊠NOS-Science Addresses	Questions	Scientific Models, Laws, Mechanisms, and Theories Explain	
About the Natural and Mat	terial World	Natural Phenomena	
Content	- Static F	lectricity: Electric Charge and Its Conservation	
Goment	- Electric	c Charge in the Atom	
	- Insulat	ors and Conductors	
	- Induce	d Charge; the Electroscope	
	- Coulon	ıb's Law	
	- Solving	Problems Involving Coulomb's Law and Vectors	
	- The Ele	ectric Field	
	- Electric	c Field Lines	
	- Electric	c Fields and Conductors	
	- Electric	c Forces in Molecular Biology:	
	- Photoc	opy Machines and Computer Printers Use Electrostatics	
	- Gauss's	Law	
	- Electric	Potential Energy and	
	- Potentia	- Potential Difference	
	- Relation between Electric Potential		
	- and Ele	ctric Field	
	- Equipol	tential Lines and Surfaces	
	- The Ele	Potential Due to Point Charges	
	- Potentis	al Due to Electric Dipole Dipole Moment	
	- Capacit	ance	
	- Dielecti	rics	
	- Storage	of Electric Energy	
	- Digital:	Binary Numbers, Signal Voltage	
	- TV and	Computer Monitors: CRTs. Flat Screens	
	- Electro	cardiogram (ECG or EKG)	
		č (
Skills	- BIG IDI	EA 1: Objects and systems have properties such as mass and charge	
JKIIIS	System	s may have internal structure.	
	- 1.B.1.1	The student is able to make claims about natural phenomena	
	based o	on conservation of electric charge. [SP 6.4]	
	- 1.B.1.2	The student is able to make predictions, using the conservation of	
	electric	charge, about the sign and relative quantity of net charge of	
	objects	or systems after various charging processes, including	
	conserv	vation of charge in simple circuits. [SP 6.4, 7.2]	
	- 1.B.2.2	The student is able to make a qualitative prediction about the	
	distrib	ution of positive and negative electric charges within neutral	
	system	s as they undergo various processes. [SP 6.4, 7.2]	
	- 1.B.2.3	The student is able to challenge claims that polarization of electric	
	charge	or separation of charge must result in a net charge on the object.	
	[SP6.1]		

- 1.B.3.1: The student is able to challenge the claim that an electric charge smaller than the elementary charge has been isolated. [SP 1.5, 6.1, 7.2]
 BIG IDEA 2: Fields existing in space can be used to explain interactions. 2.C.1.1: The student is able to predict the direction and the magnitude of the force exerted on an object with an electric charge q placed in an electric field E using the mathematical model of the relation between an <i>F</i> = <i>a E</i>.
 electric force and an electric field: F = q E; a vector relation.[SP 6.4, 7.2] 2.C.1.2: The student is able to calculate any one of the variables — electric force, electric charge, and electric field — at a point given the values and sign or direction of the other two quantities.[SP 2.2] 2.C.2.1: The student is able to qualitatively and semi-quantitatively apply the vector relationship between the electric field and the net electric charge creating that field. [SP 2.2, 6.4]
- 2.C.3.1: The student is able to explain the inverse square dependence of the electric field surrounding a spherically symmetric electrically charged
 object. [SP 6.2] 2.C.4.1: The student is able to distinguish the characteristics that differ between monopole fields (gravitational field of spherical mass and electrical field due to single point charge) and dipole fields (electric dipole field and magnetic field) and make claims about the spatial behavior of the fields using qualitative or semiquantitative arguments based on vector addition of fields due to each point source, including identifying the locations and signs of sources from a vector diagram of the field. [SP 2.2, 6.4, 7.2] 2.C.4.2: The student is able to apply mathematical routines to determine the magnitude and direction of the electric field at specified points in the vicinity of a small set (2-4) of point charges, and express the results in terms of magnitude and direction of the field in a visual representation by drawing field vectors of appropriate length and direction at the specified points. [SP 1.4, 2.2] 2.C.5.1: The student is able to create representations of the magnitude and direction of the electric field at various distances (small compared to plate size) from two electrically charged plates of equal magnitude and opposite signs, and is able to recognize that the assumption of uniform field is not
 appropriate near edges of plates. [SP 1.1, 2.2] 2.C.5.2: The student is able to calculate the magnitude and determine the direction of the electric field between two electrically charged parallel plates, given the charge of each plate, or the electric potential difference and plate separation. [SP 2.2] 2.C.5.3: The student is able to represent the motion of an electrically charged particle in the uniform field between two oppositely charged plates and express the connection of this motion to projectile motion of an object with mass in the Earth's gravitational field. [SP 1.1, 2.2, 7.1]
 2.E.1.1: The student is able to construct or interpret visual representations of the isolines of equal gravitational potential energy per unit mass and refer to each line as a gravitational equipotential. [SP 1.4, 6.4, 7.2] 2.E.2.1: The student is able to determine the structure of isolines of electric potential by constructing them in a given electric field. [SP 6.4, 7.2] 2.E.2.2: The student is able to predict the structure of isolines of electric potential by constructing them in a given electric field and make

	connections between these isolines and those found in a gravitational
	field. [SP 6.4, 7.2]
-	2.E.2.3: The student is able to qualitatively use the concept of isolines to
	construct isolines of electric potential in an electric field and determine
	the effect of that field on electrically charged objects. [SP 1.4]
-	2.E.3.1: The student is able to apply mathematical routines to calculate the
	average value of the magnitude of the electric field in a region from a
	description of the electric potential in that region using the displacement
	along the line on which the difference in potential is evaluated. [SP 2.2]
-	2 E 3 2. The student is able to apply the concent of the isoline
	representation of electric notential for a given electric charge distribution
	to predict the average value of the electric field in the region [SD 1.4.6.4]
	to predict the average value of the electric field in the region. [3r 1.4, 0.4]
_	BIC IDEA 3. The interactions of an object with other objects can be
	described by forece
	2 A 2 1. The student is able to represent formers in discreme or
-	3.A.2.1: The student is able to represent forces in diagrams or
	mathematically using appropriately labeled vectors with magnitude,
	direction, and units during the analysis of a situation. [SP 1.1]
-	3.A.3.2: The student is able to challenge a claim that an object can exert a
	force on itself. [SP 6.1]
-	3.A.3.3: The student is able to describe a force as an interaction between
	two objects and identify both objects for any force. [SP 1.4]
-	3.A.3.4: The student is able to make claims about the force on an object
	due to the presence of other objects with the same property: mass, electric
	charge. [SP 6.1, 6.4]
-	3.A.4.1: The student is able to construct explanations of physical situations
	involving the interaction of bodies using Newton's third law and the
	representation of action-reaction pairs of forces. [SP 1.4, 6.2]
-	3.4.4.2: The student is able to use Newton's third law to make claims and
	predictions about the action-reaction pairs of forces when two objects
	interact [SP 6 4 7 2]
_	3 4 4 3. The student is able to analyze situations involving interactions
	among several objects by using free-body diagrams that include the
	ambig several objects by using mee-body diagrams that include the
	2 D 1 2. The student is able to recommended from hody diagram
-	o.b.1.o. The student is able to reexpress a free-body diagram
	representation into a mathematical representation and solve the
	mathematical representation for the acceleration of the object. [SP 1.5,
-	3.B.1.4: The student is able to predict the motion of an object subject to
	torces exerted by several objects using an application of Newton's second
	law in a variety of physical situations. [SP 6.4, 7.2]
-	3.B.2.1: The student is able to create and use free-body diagrams to
	analyze physical situations to solve problems with motion qualitatively
	and quantitatively. [SP 1.1, 1.4, 2.2]
-	LO 3.C.2.1: The student is able to use Coulomb's law qualitatively and
	quantitatively to make predictions about the interaction between two
	electric point charges. [SP 2.2, 6.4]
-	3.C.2.2: The student is able to connect the concepts of gravitational force
	and electric force to compare similarities and differences between the
	forces [SP 7 2]
_	3 C 2 3: The student is able to use mathematics to describe the electric
-	force that results from the interaction of several congrated point charges
	(gaparally 2 to 4 point charges though more are permitted in city tions of
	(generally 2 to 4 point charges, though more are permitted in situations of
1	nign symmetry). [SP 2.2]

	- 3.G.1.2: The student is able to connect the strength of the gravitational
	force between two objects to the spatial scale of the situation and the
	forece, ISD 7.11
	I 0 3 G 2 1. The student is able to connect the strength of electromagnetic
	forces with the spatial scale of the situation the magnitude of the electric
	charges, and the motion of the electrically charged objects involved. [SP
	7.1]
	- BIG IDEA 4: Interactions between systems can result in changes in those
	systems.
	- 4.E.3.1: The student is able to make predictions about the redistribution of
	charge during charging by friction, conduction, and induction. [SP 6.4]
	- 4.E.3.2: The student is able to make predictions about the redistribution of
	charge caused by the electric field due to other systems, resulting in $\frac{1}{2}$
	A F 2 2: The student is able to construct a representation of the
	distribution of fixed and mobile charge in insulators and conductors [SP
	1 1 1 4 6 4]
	- 4.E.3.4: The student is able to construct a representation of the
	distribution of fixed and mobile charge in insulators and conductors that
	predicts charge distribution in processes involving induction or
	conduction. [SP 1.1, 1.4, 6.4]
	- 4.E.3.5: The student is able to plan and/or analyze the results of
	experiments in which electric charge rearrangement occurs by
	electrostatic induction, or is able to refine a scientific question relating to
	such an experiment by identifying anomalies in a data set or procedure.
	[SP 3.2, 4.1, 4.2, 5.1, 5.3]
	- BIG IDEA 5: Changes that occur as a result of interactions are constrained
	by conservation laws.
	- 5.A.2.1: The student is able to define open and closed systems for
	everyday situations and apply conservation concepts for energy, charge,
	and linear momentum to those situations. [SP 6.4, 7.2]
	- 5.B.2.1: The student is able to calculate the expected behavior of a system
	using the object model (i.e., by ignoring changes in internal structure) to
	analyze a situation. Then, when the model fails, the student can justify the
	use of conservation of energy principles to calculate the change in internal
	system [SP 1.4, 2.1]
	- 5 C 2 1. The student is able to predict electric charges on objects within a
	system by application of the principle of charge conservation within a
	system. [SP 6.4]
	- 5.C.2.2: The student is able to design a plan to collect data on the electrical
	charging of objects and electric charge induction on neutral objects and
	qualitatively analyze that data. [SP 4.2, 5.1]
	- 5.C.2.3: The student is able to justify the selection of data relevant to an
	investigation of the electrical charging of objects and electric charge
	induction on neutral objects. [SP 4.1]
Assessments	- Teacher evaluation of special projects
	- Quizzes and chapter tests
	- Homework/class work assignments
	- Experiments/1ab reports Weakly Project Crade
1	

Interventions/	- Provide advanced notice for tests		
differentiated	 Present materials suitable to student's level of functioning 		
in struction	- Include hands on activities		
Instruction	 Provide options for independent study 		
Lesson	- Hands on activities		
resources/Activities	- Chapter study guides		
resources/neuvices	- Oral presentation of chapter concepts		
	 Laboratory exercises related to subject matter 		
	Electric Forces: Straws and Pens		
	 Electric Charges: Charges and Sticky Tape 		
	An Electrostatics Puzzler		
	 Research based labs created by students (Once a week project day) 		
	 Van de Graff Generator Demonstrations 		
	Electroscope Investigation		
	 Creating Qualitative-Prediction Questions 		
	 Coulomb's Law Investigation 		
	 Solving Electric Force Problems 		
	Electric Field Simulations		
	Electric Field Mapping		
	 Electric Field Between Parallel Plates 		
	Electric Potential		
	 Analyzing Equipotential Lines 		
	 Equipotential Mapping Investigation 		
	Point Charges		

Pine Hill Public Schools Science Curriculum			
Unit Title: Electric Cir	cuits (Ch's 18 & 19)	Unit #2	
Course or Grade Leve	l: AP Physics 2	Length of Time: 5 weeks	
NGSS Performance	- HS-PS1-1. U	se the periodic table as a model to predict	
Expectations (PF's)	the relative properties of elements based on the patterns of		
	electrons in the outermost energy level of atoms.		
	- HS-PS1-2. C	onstruct and revise an explanation for the	
	outcome of a simp	le chemical reaction based on the outermost	
	electron states of a	atoms, trends in the periodic table, and	
	knowledge of the j	patterns of chemical properties.	
	- HS-PSI-3. Plan and conduct an investigation to gather		
	evidence to compare the structure of substances at the DUIK scale to infer the strength of electrical forces between particles		
	scale to infer the strength of electrical forces between particles		
	- no-roi-7. 0 the claim that ator	se mathematical representations to support	
	a chemical reaction		
	- HS-PS1-8 D	evelop models to illustrate the changes in	
	the composition of	f the nucleus of the atom and the energy	
	released during th	e processes of fission, fusion, and radioactive	
	decay.		
	- 2-1. Analyze d	ata to support the claim that Newton's	
	second law of mot	ion describes the mathematical relationship	
	among the net for	ce on a macroscopic object, its mass, and its	
	acceleration.		
	- HS-PS2-2. Use mathematical representations to support		
	the claim that the	total momentum of a system of objects is	
	conserved when the	here is no net force on the system.	
	- H5-P52-4. U	se mainematical representations of	
	and predict the gr	avitational and electrostatic forces between	
	objects	with the creek ostatle forces between	
	- HS-PS2-5. P	lan and conduct an investigation to provide	
	evidence that an electric current can produce a magnetic fie		
	and that a changing magnetic field can produce an electric		
	current.		
	- HS-PS2-6. C	ommunicate scientific and technical	
	information about	why the molecular-level structure is	
	important in the fu	inctioning of designed materials.*	
	- HS-PS3-1 C	reate a computational model to calculate the	
	change in the ener	gy of one component in a system when the	
	change in energy of	of the other component(s) and energy flows	
		vstein are known.	
	energy at the mac	cosconic scale can be accounted for as a	
	combination of en	ergy associated with the motions of particles	
	(objects) and ener	gy associated with the relative positions of	
	particles (objects)		
	- HS-PS3-3. D	esign, build, and refine a device that works	
	within given const	raints to convert one form of energy into	
	another form of er	iergy.*	
	- HS-PS3-5. D	evelop and use a model of two objects	
	interacting throug	h electric or magnetic fields to illustrate the	
	forces between ob	jects and the changes in energy of the	
	objects due to the	interaction.	

	 HS-PS4 Waves and their Applications in Technologies for Information Transfer HS-PS4-1. Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media. HS-PS4-2. Evaluate questions about the advantages of using a digital transmission and storage of information. HS-PS4-3. Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other. HS-PS4-4. Evaluate the validity and reliability of claims 		
	in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.		
	- HS-PS4	-5. Communicate technical information about	
	now so behavio	me technological devices use the principles of wave	
	capture	e information and energy.*	
Cross Cutting Concepts		Science and Engineering Practices	
⊠Patterns		Asking questions and defining problems	
⊠Cause and Effect		⊠Developing and using models	
oxtimesScale, Proportion, and Q)uantity	⊠Planning and carrying out investigations	
⊠Systems and Systems M	odels	Analyzing and interpreting data	
\Box Energy and Matter in Sy	vstems	⊠Using mathematics and computational thinking	
\Box Structure and Function		oxtimesConstructing explanations and designing solutions	
\Box Stability and Change in	Systems	□Engaging in argument from evidence	
Nature of Science	e (NOS)	⊠Obtaining, evaluating, and communicating information	
\boxtimes NOS-Science is a Way of	f Knowing		
oxtimesNOS-Scientific Knowledge Assumes an		Nature of Science (NOS)	
Order and Consistency in	Natural	Scientific Investigations Use a Variety of Methods	
Systems	- Endoarran	Scientific Knowledge is Based on Empirical	
NOS-Science is a Human	Questions	EVIGENCE	
About the Natural and Ma	Questions terial World	New Fyidence	
		Scientific Models, Laws, Mechanisms, and Theories	
		Explain Natural Phenomena	
Contont	- The Ele	ectric Battery	
Content	- Electric Current		
	- Ohm's Law: Resistance and Resistors		
	- Resistivity		
	- Electric Power		
	- Power in Household Circuits		
	- Alternating Current		
	- whereoptic view of Electric Current		
	 Electrical Conduction in the Human Nervous System 		
	- EMF ar	nd Terminal Voltage	
- Resistor		rs in Series and in Parallel	
- Kirchho		off's Rules	
	- EMFs in Series and in Parallel;		
	- Charging a Battery		

	- Circuits Containing Capacitors in Series and in Parallel
	- RC Circuits—Resistor and Capacitor in Series
	- Electric Hazards
	- Ammeters and Voltmeters—Measurement Affects the Quantity
	Being Measured
	Deing Weasured
Skille /Learning	- BIC IDFA 4. Interactions between systems can result in
Skills/Learning	changes in those systems
Objectives	- A F A 1: The student is able to make predictions about the
	nroperties of resistors and /or capacitors when placed in a
	simple circuit based on the geometry of the circuit element
	and supported by scientific theories and mathematical
	relationshing [SP 2.2.6.4]
	A = A = A = A
	data to determine the effect of changing the geometry and /or
	materials on the resistance or canacitance of a circuit element
	and relate results to the basic properties of resistors and
	canacitors [SD 4.1.4.2]
	A E 4.2. The student is able to analyze data to determine the
	- 4.E.4.5. The student is able to analyze data to determine the
	resistance or canacitance of a circuit element and relate results
	to the basic properties of resistors and canacitors [SP 5.1]
	A = 5.1. The student is able to make and justify a quantitative
	- 4.E.S.1. The student is able to make and justify a qualitative
	of one or two circuit elements on the currents and notential
	differences in a circuit containing a small number of sources of
	omf resistors, canacitors, and switches in series and /or
	parallel. [SP 2.2, 6.4]
	- BIG IDEA 5: Changes that occur as a result of interactions are
	constrained by conservation laws.
	- 5.B.9.4: The student is able to analyze experimental data
	including an analysis of experimental uncertainty that will
	demonstrate the validity of Kirchhoff's loop rule.[SP 5.1]
	 5.B.9.5: The student is able to use conservation of energy
	principles (Kirchhoff's loop rule) to describe and make
	predictions regarding electrical potential difference, charge,
	and current in steady-state circuits composed of various
	combinations of resistors and capacitors. [SP 6.4]
	- 5.B.9.6: The student is able to mathematically express the
	changes in electric potential energy of a loop in a multiloop
	electrical circuit and justify this expression using the principle
	of the conservation of energy. [SP 2.1, 2.2]
	- 5.B.9.7: The student is able to refine and analyze a scientific
	question for an experiment using Kirchhoff's Loop rule for
	circuits that includes determination of internal resistance of
	the battery and analysis of a non-ohmic resistor. [SP 4.1, 4.2,
	5.1, 5.3]
	- 5.B.9.8: The student is able to translate between graphical and
	symbolic representations of experimental data describing
	relationships among power, current, and potential difference
	across a resistor. [SP 1.5]
	- 5.C.3.4: The student is able to predict or explain current values
	in series and parallel arrangements of resistors and other

	 branching circuits using Kirchhoff's junction rule and relate the rule to the law of charge conservation. [SP 6.4, 7.2] 5.C.3.5: The student is able to determine missing values and direction of electric current in branches of a circuit with resistors and NO capacitors from values and directions of current in other branches of the circuit through appropriate selection of nodes and application of the junction rule. [SP 1.4, 2.2]
	 5.C.3.6: The student is able to determine missing values and direction of electric current in branches of a circuit with both resistors and capacitors from values and directions of current in other branches of the circuit through appropriate selection of nodes and application of the junction rule. [SP 1.4, 2.2] 5.C.3.7: The student is able to determine missing values, direction of electric current, charge of capacitors at steady state, and potential differences within a circuit with resistors and capacitors from values and directions of current in other branches of the circuit. [SP 1.4, 2.2]
Assessments	 Teacher evaluation of special projects Quizzes and chapter tests Homework/class work assignments Experiments/lab reports Weekly Projects
Interventions/ differentiated instruction	 Provide advanced notice for tests Present materials suitable to student's level of functioning Include hands on activities Provide options for independent study
Lesson resources/Activities	 Hands on activities Laboratory exercises related to subject matter Resistance and Resistivity Investigation Capacitor Lab DC Circuits and Brightness Investigation DC Circuits Simulation DC Circuits and Resistors Investigation Mirchhoff's Loop and Junction Rules RC Circuit Investigation Chapter study guides Oral presentation of chapter concepts

Pine Hill Public Schools Science Curriculum			
Unit Title: Magnetism	and Electromagnetic	Unit #3	
Induction (Ch's 20,21	,&22)		
Course or Grade Leve	l: AP Physics 2	Length of Time: 5 weeks	
NGSS Performance	- HS-PS1-1. Us	se the periodic table as a model to predict	
Expectations (PE's)	the relative proper	ties of elements based on the patterns of	
	electrons in the out	termost energy level of atoms.	
	- HS-PS1-3. Pl	an and conduct an investigation to gather	
	evidence to compa	re the structure of substances at the bulk	
	scale to infer the st	rength of electrical forces between particles.	
	- 2-1. Analyze da	ita to support the claim that Newton's	
	second law of moti	on describes the mathematical relationship	
	among the net forc	e on a macroscopic object, its mass, and its	
	acceleration.		
	- HS-PS2-2. Us	se mathematical representations to support	
	the claim that the t	otal momentum of a system of objects is	
	conserved when th	ere is no net force on the system.	
	- HS-PS2-4. Us	se mathematical representations of	
	Newton's Law of G	ravitation and Coulomb's Law to describe	
	and predict the gra	vitational and electrostatic forces between	
		an and conduct on investigation to provide	
	- HS-PS2-5. PI	an and conduct an investigation to provide	
	and that a changing	x magnetic field can produce a magnetic field	
	current	inagnetic nelu can produce an electric	
	- HS-PS2-6 Co	ommunicate scientific and technical	
	information about	why the molecular-level structure is	
	important in the fu	nctioning of designed materials.*	
	- HS-PS3-3. De	esign, build, and refine a device that works	
	within given const	raints to convert one form of energy into	
	another form of en	ergy.*	
	- HS-PS3-5. De	evelop and use a model of two objects	
	interacting through	electric or magnetic fields to illustrate the	
	forces between obj	ects and the changes in energy of the	
	objects due to the i	nteraction.	
	- HS-PS4 Waves and	their Applications in Technologies for	
	Information Trans	fer	
	- HS-PS4-1. Us	se mathematical representations to support	
	a claim regarding r	elationships among the frequency,	
	wavelength, and sp	eed of waves traveling in various media.	
	- HS-PS4-2. Ev	valuate questions about the advantages of	
	using a digital tran	smission and storage of information.	
	- HS-PS4-3. Ev	valuate the claims, evidence, and reasoning	
	behind the idea tha	t electromagnetic radiation can be	
	described either by	a wave model or a particle model, and that	
	for some situations	one model is more useful than the other.	

	 HS-PS4-4. Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter. HS-PS4-5. Communicate technical information about 			
	how so	how some technological devices use the principles of wave		
	behavio	vior and wave interactions with matter to transmit and		
	capture	e information and energy.*		
Cross Cutting Concepts		Science and Engineering Practices		
⊠Patterns		⊠Asking questions and defining problems		
⊠Cause and Effect		⊠Developing and using models		
oxtimesScale, Proportion, and ()uantity	⊠Planning and carrying out investigations		
\Box Systems and Systems M	lodels	⊠Analyzing and interpreting data		
□Energy and Matter in Sy	ystems	⊠Using mathematics and computational thinking		
□Structure and Function		⊠Constructing explanations and designing solutions		
□Stability and Change in	Systems	⊠Engaging in argument from evidence		
	-	⊠Obtaining, evaluating, and communicating		
Nature of Science	e (NOS)	information		
⊠NOS-Science is a Way o	f Knowing			
⊠NOS-Scientific Knowled	lge Assumes an	Nature of Science (NOS)		
Order and Consistency in	Natural	⊠Scientific Investigations Use a Variety of Methods		
Systems		⊠Scientific Knowledge is Based on Empirical		
⊠NOS-Science is a Huma	n Endeavor	Evidence		
⊠NOS-Science Addresses	Questions	⊠Scientific Knowledge is Open to Revision in Light of		
About the Natural and Ma	terial World	New Evidence		
		⊠Scientific Models, Laws, Mechanisms, and Theories		
		Explain Natural Phenomena		
Content	- Magnets and Magnetic Fields			
	- Electric Currents Produce Magnetic Fields			
	- Force on an Electric Current in a Magnetic Field; Definition of B			
	- Force o	in an Electric Charge Moving in a Magnetic Field		
	- Magnet	activity on Two Parallel Wires		
	- Folce b	ds and Electromagnets		
	- Ampere	as and Electromagnets		
	- Torque	on a Current Loop:		
	- Magnetic Moment			
	- Applications: Motors, Loudspeakers, Galvanometers			
	- Mass Spectrometer			
	- Ferromagnetism: Domains and Hysteresis			
	- Induced EMF			
	- Faraday's Law of Induction; Lenz's Law			
	- EMF Induced in a Moving Conductor			
	- Changing Magnetic Flux Produces an Electric Field			
	- Electric Generators			
	- Back E	- Back EMF and Counter Torque;		
	- Eddy C	Eddy Currents Transformers and Transmission of Power		
	- Italisto	ansionners and Transmission of Power formation Storage: Magnetic and Semiconductor: Tape, Hard		
	Drive I	Drive RAM		
	- Applications of Induction: Microphone. Seismograph. GFCI			
	- Inducta	- Inductance		
	- Energy Stored in a Magnetic Field			

	 LR Circuit AC Circuits and Reactance LRC Series AC Circuit Resonance in AC Circuits Changing Electric Fields Produce Magnetic Fields; Maxwell's Equations Production of Electromagnetic Waves Light as an Electromagnetic Wave and the Electromagnetic Spectrum Measuring the Speed of Light Energy in EM Waves Momentum Transfer and Radiation Pressure Radio and Television; Wireless Communication
Skills/Learning	- BIG IDEA 2: Fields existing in space can be used to explain
Objectives	interactions.
Objectives	 2.C.4.1: The student is able to distinguish the characteristics that differ between monopole fields (gravitational field of spherical mass and electrical field due to single point charge) and dipole fields (electric dipole field and magnetic field) and make claims about the spatial behavior of the fields using qualitative or semi-quantitative arguments based on vector addition of fields due to each point source, including identifying the locations and signs of sources from a vector diagram of the field. [SP 2.2, 6.4, 7.2] 2.D.1.1: The student is able to apply mathematical routines to express the force exerted on a moving charged object by a magnetic field. [SP 2.2] 2.D.2.1: The student is able to create a verbal or visual representation of a magnetic field around a long straight wire or a pair of parallel wires. [SP 1.1] 2.D.3.1: The student is able to describe the orientation of a magnetic dipole placed in a magnetic field in general and the particular cases of a compass in the magnetic field of the Earth and iron filings surrounding a bar magnet. [SP 1.2] BIG IDEA 3: The interactions of an object with other objects can be described by forces. 3.A.2.1: The student is able to challenge a claim that an object can exert a force on itself. [SP 6.1] 3.A.3.3: The student is able to construct explanations of physical situations involving the interaction of bodies using Newton's third law and the representation of adjust of physical situations involving the interaction of bodies using Newton's third law and the representation of bodies using soft of the field of the fact of the field of the fact of the field is the construct explanations of physical situations involving the interaction of adjust of the field is the construct explanations of physical situations involving the interaction of adjust of the field is the construct explanation of a situations involving the interaction of bodies using Newton's third law and the representation of action-reaction pa

	- 3.A.4.3: The student is able to analyze situations involving
	interactions among several objects by using free-body
	diagrams that include the application of Newton's third law to
	identify forces. [SP 1.4]
	- 3.C.3.1: The student is able to use right-hand rules to analyze a
	situation involving a current-carrying conductor and a moving
	electrically charged object to determine the direction of the
	magnetic force everted on the charged object due to the
	magnetic field greated by the current corruing conductor [SD
	1 Al
	- 3.C.3.2: The student is able to plan a data collection strategy
	appropriate to an investigation of the direction of the force on
	a moving electrically charged object caused by a current in a
	wire in the context of a specific set of equipment and
	instruments and analyze the resulting data to arrive at a
	conclusion. [SP 4.2, 5.1]
	- BIG IDEA 4: Interactions between systems can result in
	changes in those systems.
	- 4.E.1.1: The student is able to use representations and models
	to qualitatively describe the magnetic properties of some
	materials that can be affected by magnetic properties of other
	objects in the system. [SP 1.1, 1.4, 2.2]
	- 4 F 2 1: The student is able to construct an explanation of the
	function of a simple electromagnetic device in which an
	induced omf is produced by a changing magnetic flux through
	an area defined by a current loop (i.e. a simple migraphone or
	an area defined by a current loop (i.e., a simple microphone of
	generator) or of the effect on behavior of a device in which an
	induced emf is produced by a constant magnetic field through
	a changing area. [SP 6.4]
Assessments	- Teacher evaluation of special projects
	- Quizzes and chapter tests
	 Homework/class work assignments
	 Experiments/lab reports
	- Weekly projects
Interventions/	 Provide advanced notice for tests
differentiated	 Present materials suitable to student's level of functioning
instruction	 Include hands on activities
	- Provide options for independent study
Lesson	- Hands on activities
resources/Activities	 Laboratory exercises related to subject matter
	Visualizing Magnetism
	Magnet and Compass Simulation
	Farth's Magnetic Field Investigation
	Magnetic Force on a Current-Carrying Wire
	Magnatia Fielda
	• Magnetic Fields
	Magnetic Flux
	Electromagnetic Induction Investigation
	- Chapter study guides
	 Oral presentation of chapter concepts

Pine Hill Public Schools Science Curriculum			
Unit Title: Thermodynamics (Ch's		Unit #4	
13,14,&15)			
Course or Grade Level: AP Physics 1		Length of Time: 4 weeks	
Course or Grade Leve NGSS Performance Expectations (PE's)	 H: AP Physics 1 HS-PS1-1. Use the perrelative properties of in the outermost enerer HS-PS1-5. Apply science explanation about the concentration of the reaction occurs. HS-PS2 Motion and St 2-1. Analyze data second law of motion amongthe net force or acceleration. HS-PS2-2. Use mathered shares the total meters. 	Length of Time: 4 weeks riodic table as a model to predict the elements based on the patterns of electrons gy level of atoms. ntific principles and evidence to provide an effects of changing the temperature or eacting particles on the rate at which a ability: Forces and Interactions ta to support the claim that Newton's describes the mathematical relationship n a macroscopic object, its mass, and its matical representations to support the	
	 claim that the total model when there is no net f HS-PS2-3. Apply scient evaluate, and refine a macroscopic object du HS-PS2-4. Use mathe Gravitation and Coulo gravitational and elect HS-PS2-6. Communication about why the molecture functioning of designed HS-PS3-2. Develop ar macroscopic scale can energy associated wit energy associated wit (objects). HS-PS3-3. Design, burgiven constraints to co of energy.* 	omentum of a system of objects is conserved orce on the system. htific and engineering ideas to design, device that minimizes the force on a uring a collision.* matical representations of Newton's Law of mb's Law to describe and predict the trostatic forces between objects. ate scientific and technical information ilar-level structure is important in the ed materials.* hd use models to illustrate that energy at the be accounted for as a combination of h the motions of particles (objects) and h the relative positions of particles ild, and refine a device that works within onvert one form of energy into another form	

	 HS-PS3-4. Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics). HS-PS3-5. Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction. HS-PS4-1. Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media. HS-PS4-3. Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations 		
Cross Cutting Concepts		Science and Engineering Practices	
Cross Cutting Concepts ☑ Patterns ☑ Cause and Effect ☑ Scale, Proportion, and Quantity ☑ Systems and Systems Models ☑ Energy and Matter in Systems ☑ Structure and Function □ Stability and Change in Systems Nature of Science (NOS) ☑ NOS-Science is a Way of Knowing ☑ NOS-Scientific Knowledge Assumes an Order and Consistency in Natural Systems ☑ NOS-Science is a Human Endeavor ☑ NOS-Science Addresses Questions About the Natural and Material World		 Science and Engineering Practices ☑ Asking questions and defining problems ☑ Developing and using models ☑ Planning and carrying out investigations ☑ Analyzing and interpreting data ☑ Using mathematics and computational thinking ☑ Constructing explanations and designing solutions ☑ Engaging in argument from evidence ☑ Obtaining, evaluating, and communicating information Nature of Science (NOS) ☑ Scientific Investigations Use a Variety of Methods ☑ Scientific Knowledge is Based on Empirical Evidence ☑ Scientific Knowledge is Open to Revision in Light of New Evidence ☑ Scientific Models, Laws, Mechanisms, and Theories Explain Natural Phenomena 	
Content	 Atomic Theory of Matter Temperature and Thermometers Thermal Equilibrium and the Zeroth Law of Thermodynamics Thermal Expansion The Gas Laws and Absolute Temperature The Ideal Gas Law Problem Solving with the Ideal Gas Law Ideal Gas Law in Terms of Molecules: Avogadro's Number Kinetic Theory and the Molecular Interpretation of Temperature Distribution of Molecular Speeds Real Gases and Changes of Phase Vapor Pressure and Humidity Diffusion HEAT Heat as Energy Transfer Internal Energy 		

	- Specific Heat	
	Calorimetry—Solving Problems	
	- Latent Heat	
	- Heat Transfer: Conduction	
	- Heat Transfer: Convection	
	- Heat Transfer: Radiation	
	- The First Law of Thermodynamics	
	- Thermodynamic Processes and	
	- the First Law	
	- Human Metabolism and the First Law	
	- The Second Law of	
	- Thermodynamics—Introduction	
	- Heat Engines	
	- Refrigerators, Air Conditioners, and	
	- Heat Pumps	
	- Entropy and the Second Law of	
	- Thermodynamics	
	- Order to Disorder	
	- Unavailability of Energy; Heat Death	
	- Statistical Interpretation of Entropy	
	- and the Second Law	
	- Thermal Pollution, Global Warming,	
	and Energy Resources	
Skills/Learning	- BIG IDEA 5: Changes that occur as a result of interactions are	
Ohiectives	constrained by conservation laws.	
objectives	- 5.A.2.1: The student is able to define open and closed systems	
	for everyday situations and apply conservation concepts for	
	energy, charge, and linear momentum to those situations. [SP	
	6.4, 7.2]	
	- 5.B.4.1: The student is able to describe and make predictions	
	about the internal energy of systems. [SP 6.4, 7.2]	
	- 5.B.4.2: The student is able to calculate changes in kinetic	
	energy and potential energy of a system, using information	
	from representations of that system. [SP 1.4, 2.1, 2.2]	
	- 5.B.5.4: The student is able to make claims about the	
	interaction between a system and its environment in which the	
	environment exerts a force on the system, thus doing work on	
	the system and changing the energy of the system (kinetic	
	energy plus potential energy). [SP 6.4, 7.2]	
	- 5.B.5.5: The student is able to predict and calculate the energy	
	transfer to (i.e., the work done on) an object or system from	
	information about a force exerted on the object or system	
	through a distance. [SP 2.2, 6.4]	
	- 5.B.5.6: The student is able to design an experiment and	
	analyze graphical data in which interpretations of the area	
	under a pressure-volume curve are needed to determine the	
	work done on or by the object or system. [SP 4.2, 5.1]	
	- 5.B.6.1: The student is able to describe the models that	
	represent processes by which energy can be transferred	
	between a system and its environment because of differences	
	in temperature: conduction, convection, and radiation. [SP 1.2]	
	- 5.B.7.1: The student is able to predict qualitative changes in the	
	internal energy of a thermodynamic system involving transfer	
	of energy due to heat or work done and justify those	

productions in terms of concernation of an error principle - ICD
predictions in terms of conservation of energy principles. [SP 6.4. 7.2]
- 5 B 7 2. The student is able to create a plot of pressure versus
volume for a thermodynamic process from given data [CD 1 1]
- 5 B 7 3. The student is able to use a plot of pressure versus
volume for a thermodynamic process to make calculations of
internal energy changes heat or work based upon
conservation of energy principles (i.e. the first law of
thermodynamics) [SP 1 1 1 4 2 2]
- BIG IDEA 7. The mathematics of probability can be used to
describe the behavior of complex systems and to interpret the
behavior of quantum mechanical systems.
- 7.A.1.1: The student is able to make claims about how the
pressure of an ideal gas is connected to the force exerted by
molecules on the walls of the container, and how changes in
pressure affect the thermal equilibrium of the system. [SP 6.4,
7.2]
- 7.A.1.2: Treating a gas molecule as an object (i.e., ignoring its
internal structure), the student is able to analyze qualitatively
the collisions with a container wall and determine the cause of
pressure, and at thermal equilibrium, to quantitatively
calculate the pressure, force, or area for a thermodynamic
problem given two of the variables. [SP 1.4, 2.2]
- 7.A.2.1: The student is able to qualitatively connect the average
of all kinetic energies of molecules in a system to the
temperature of the system. [SP 7.1]
- 7.A.2.2: The student is able to connect the statistical
distribution of microscopic kinetic energies of molecules to the
macroscopic temperature of the system and to relate this to
thermodynamic processes. [SP 7.1]
- /.A.3.1: The student is able to extrapolate from pressure and
temperature or volume and temperature data to make the
prediction that there is a temperature at which the pressure or volume extrapolates to zore [SD]
- 6472
- 7 A 3 2. The student is able to design a plan for collecting data
to determine the relationshins between pressure volume and
temperature and amount of an ideal gas and to refine a
scientific question concerning a proposed incorrect
relationship between the variables. [SP 3.2. 4.2]
- 7.A.3.3: The student is able to analyze graphical
representations of macroscopic variables for an ideal gas to
determine the relationships between these variables and to
ultimately determine the ideal gas law PV = nRT. [SP 5.1]
- 7.B.1.1: The student is able to extrapolate from pressure and
temperature or volume and temperature data to make the
prediction that there is a temperature at which the pressure or
volume extrapolates to zero. [SP
- 6.4, 7.2]
- 7.B.2.1: The student is able to connect qualitatively the second
law of thermodynamics in terms of the state function called
entropy and how it (entropy) behaves in reversible and
irreversible processes. [SP 7.1]

Assessments	- Teacher evaluation of special projects		
	- Quizzes and chapter tests		
	 Homework/class work assignments 		
	- Experiments/lab reports		
	- Weekly projects		
Interventions/	 Provide advanced notice for tests 		
differentiated	 Present materials suitable to student's level of functioning 		
instruction	 Include hands on activities 		
IIISti uction	 Provide options for independent study 		
Lesson	Hands on activities		
resources/Activities	 Laboratory exercises related to subject matter 		
resources/netrones	Gas Laws Investigation		
	Kinetic Theory of Matter		
	 Thermal Conductivity Investigation 		
	 Introduction to P–V Diagrams 		
	Heat Engine Investigation		
	• Introduction to the Second Law of Thermodynamics		
	- Chapter study guides		
	- Oral presentation of chapter concepts		

Pine Hill Public Schools Science Curriculum			
S			
vidence to ing the cicles on the ewton's relationship nass, and its ns to support objects is m. nical ure is s.* o calculate the m when the energy flows rate that for as a ns of particles positions of n to provide n two			

	closed system results in a more uniform energy distribution		
	among the components in the system (second law of		
	thermodynamics).		
Cross Cutting Concepts	Science and Engineering Practices		
⊠Patterns		⊠Asking questions and defining problems	
⊠Cause and Effect		⊠Developing and using models	
oxtimesScale, Proportion, and Q)uantity	⊠Planning and carrying out investigations	
⊠Systems and Systems M	lodels	⊠Analyzing and interpreting data	
□Energy and Matter in Sy	ystems	⊠Using mathematics and computational thinking	
□Structure and Function		⊠Constructing explanations and designing solutions	
\Box Stability and Change in	Systems	□Engaging in argument from evidence	
	-	⊠Obtaining, evaluating, and communicating	
Nature of Science	e (NOS)	information	
⊠NOS-Science is a Way of	f Knowing		
⊠NOS-Scientific Knowled	lge Assumes an	Nature of Science (NOS)	
Order and Consistency in	Natural	Scientific Investigations Use a Variety of Methods	
Systems		Scientific Knowledge is Based on Empirical	
NOS-Science is a Humai	n Endeavor	Evidence	
⊠NOS-Science Addresses	Questions	⊠Scientific Knowledge is Open to Revision in Light of	
About the Natural and Ma	terial World	New Evidence	
		⊠Scientific Models, Laws, Mechanisms, and Theories	
		Explain Natural Phenomena	
Content	- Phases of Matter		
	- Density	v and Specific Gravity	
	- Pressure in Fluids		
	- Atmospheric Pressure and		
	- Gauge Pressure		
	- Pascal's Principle		
	- Measurement of Pressure;		
	- Gauges and the Barometer		
	- Buoyancy and Archimedes' Principle		
	- the Equ	ation of Continuity	
	- Bernou	Ill's Equation	
	- Applica	ations of Bernoulli's Principle:	
	- Torrice	elli, Airplanes, Baseballs.	
	- Blood Flow		
	- Viscosity		
	- Flow in Tubes: Poiseuille's Equation,		
	- Blood F	Flow	
	- Surface Tension and Capillarity		
	- Pumps,	- Pumps, and the Heart	
Skills/Learning	- BIG IDEA 1: Objects and systems have properties such as mass		
Objectives	and cha	arge. Systems may have internal structure.	
	- 1.E.1.1:	The student is able to predict the densities, differences	
	in dens	ities, or changes in densities under different conditions	
	tor nati	diation ISD 4.2. (4)	
	the pre	the prediction. [SP 4.2, 6.4]	
	- 1.E.1.2:	- 1.E.1.2: The student is able to select from experimental data	
	object (object and for compare densities of several objects [SD 4.1	
	6.4]		

	 BIG IDEA 3: The interactions of an object with other objects can be described by forces. 3.C.4.1: The student is able to make claims about various contact forces between objects based on the microscopic cause of those forces. [SP 6.1] 3.C.4.2: The student is able to explain contact forces (tension, friction, normal, buoyant, spring) as arising from interatomic electric forces and that they therefore have certain directions. [SP 6.2]
	 BIG IDEA 5: Changes that occur as a result of interactions are constrained by conservation laws. 5.B.10.1: The student is able to use Bernoulli's equation to make calculations related to a moving fluid. [SP 2.2] 5.B.10.2: The student is able to use Bernoulli's equation and/or the relationship between force and pressure to make calculations related to a moving fluid. [SP 2.2] 5.B.10.3: The student is able to use Bernoulli's equation and the continuity equation to make calculations related to a moving fluid. [SP 2.2] 5.B.10.3: The student is able to use Bernoulli's equation and the continuity equation to make calculations related to a moving fluid. [SP 2.2] 5.B.10.4: The student is able to construct an explanation of Bernoulli's equation in terms of the conservation of energy. [SP 6.2] 5.F.1.1: The student is able to make calculations of quantities related to flow of a fluid, using mass conservation principles (the continuity equation). [SP 2.1, 2.2, 7.2]
Assessments	 Teacher evaluation of special projects Quizzes and chapter tests Homework/class work assignments Experiments/lab reports Weekly projects
Interventions/ differentiated instruction	 Provide advanced notice for tests Present materials suitable to student's level of functioning Include hands on activities Provide options for independent study
Lesson resources/Activities	 Hands on activities Laboratory exercises related to subject matter Archimedes' Principle InvestigationCircular motion lab Research Presentation Torricelli's Theorem Investigation Ideal Fluid Flow Water Fountain Investigation Chapter study guides Oral presentation of chapter concepts

Pine Hill Public Schools Science Curriculum			
Unit Title: Geometric and Physical Optics		Unit #6	
(Ch's 23,24,&25)			
Course or Grade Level: AP Physics 2		Length of Time: 6 weeks	
NGSS Performance			
Expectations (PF's)	-	HS-PS1-1. Use	e the periodic table as a model to predict
Expectations (i L 3)		the relative properti	ies of elements based on the patterns of
		electrons in the oute	ermost energy level of atoms.
	-	- HS-PS1-2. Construct and revise an explanation for the	
		outcome of a simple	chemical reaction based on the outermost
		electron states of atoms, trends in the periodic table, and	
		2.1 Analyza dat	the support the claim that Newton's
	-	2-1. Analyze data to support the claim that Newton's	
		among the not force	on a macroscopic object its mass and its
		anong the net lorce	on a macroscopic object, its mass, and its
	_		mathematical representations to support
	_	the claim that the to	tal momentum of a system of objects is
		conserved when the	re is no net force on the system
	-	HS-PS2-3. An	nly scientific and engineering ideas to
		design, evaluate, and	d refine a device that minimizes the force
		on a macroscopic ob	piect during a collision.*
	-	HS-PS2-4. Use	e mathematical representations of
		Newton's Law of Gra	avitation and Coulomb's Law to describe
		and predict the grav	itational and electrostatic forces between
		objects.	
	-	HS-PS2-5. Plan and conduct an investigation to provide	
		evidence that an electric current can produce a magnetic field	
		and that a changing magnetic field can produce an electric	
		current.	
	-	HS-PS2-6. Communicate scientific and technical	
		information about why the molecular-level structure is	
		important in the functioning of designed materials.*	
	-	HS-PS3-1 Create a computational model to calculate the	
		change in the energy	y of one component in a system when the
		change in energy of	the other component(s) and energy flows
		In and out of the sys	tem are known.
	-	operate the macro	scopic scale can be accounted for as a
		combination of ener	scopic scale call be accounted for as a
		(objects) and energy	associated with the relative positions of
		narticles (objects)	associated with the relative positions of
	-	HS-PS3-3. Des	sign, build, and refine a device that works
		within given constra	aints to convert one form of energy into
		another form of ene	rgy.*
	-	HS-PS4-1. Use	e mathematical representations to support
		a claim regarding re	lationships among the frequency,
		wavelength, and spe	eed of waves traveling in various media.
	-	HS-PS4-2. Eva	aluate questions about the advantages of
		using a digital trans	mission and storage of information.
	-	HS-PS4-3. Eva	aluate the claims, evidence, and reasoning
		behind the idea that	electromagnetic radiation can be
		described either by	a wave model or a particle model, and that
		for some situations	one model is more useful than the other.

	- HS-PS4-4. Evaluate the validity and reliability of claims				
	in published materials of the effects that different frequencies				
	of electromagnetic radiation have when absorbed by matter.				
	- HS-PS4-5. Communicate technical information about				
	how so	how some technological devices use the principles of wave			
	hehavic	or and wave interactions with matter to transmit and			
	canture	information and energy *			
Cross Cutting Concents	capture	Science and Engineering Practices			
S Patterns		Asking questions and defining problems			
\square atterns		Asking questions and defining problems			
	N				
Scale, Proportion, and C	Juantity	☑ Planning and carrying out investigations			
\boxtimes Systems and Systems M	lodels	Analyzing and interpreting data			
\boxtimes Energy and Matter in Sy	/stems	⊠Using mathematics and computational thinking			
Structure and Function		oxtimesConstructing explanations and designing solutions			
\boxtimes Stability and Change in	Systems	□Engaging in argument from evidence			
		oxtimes Obtaining, evaluating, and communicating			
Nature of Science	e (NOS)	information			
⊠NOS-Science is a Way o	f Knowing				
⊠NOS-Scientific Knowled	lge Assumes an	Nature of Science (NOS)			
Order and Consistency in	Natural	Scientific Investigations Use a Variety of Methods			
Systems		Scientific Knowledge is Based on Empirical			
\boxtimes NOS-Science is a Human	n Endeavor	Evidence			
\boxtimes NOS-Science Addresses	Questions	Scientific Knowledge is Open to Revision in Light of			
About the Natural and Ma	terial World	New Fyidence			
About the Natural and Ma		Scientific Models Laws Mechanisms and Theories			
		Explain Natural Phonomona			
Contont	- The Ray	v Model of Light			
Content	- Reflection: Image Formation by a				
	- Plane M	lirror			
	- Formati	on of Images by Spherical			
	- Mirrors	on of mages by spherical			
	- Index of	fRefraction			
	- Refracti	on: Snell's Law			
	- Total In	ternal Reflection; Fiber Optics			
	- Thin Le	nses; Ray Tracing			
	- The Thi	n Lens Equation			
	- Combin	ations of Lenses			
	- Lensmaker's Equation				
	- Waves v	vs. Particles; Huygens' Principle			
	- and Diff	fraction			
	- Huygens' Principle and the Law of				
	- Refraction				
	- Interference—Young's Double-Slit				
	- Experiment				
	- The Visible Spectrum and Dispersion				
- Diffracti		ion by a Single Slit or Disk			
- Diffraction Grating		ion Grating			
	- The Spe	- The Spectrometer and Spectroscopy			
	- Interference in Thin Films				
	- Michelson Interferometer				
	- Polarization				
1	- Liquid Crystal Displays (LCD)				

	 Scattering of Light by the Atmosphere Cameras: Film and Digital The Human Eye; Corrective Lenses Magnifying Glass Telescopes Compound Microscope Aberrations of Lenses and Mirrors Limits of Resolution; Circular Apertures Resolution of Telescopes and Microscopes; the A Limit Resolution of the Human Eye and Useful Magnification Specialty Microscopes and Contrast X-Rays and X-Ray Diffraction Ray Imaging and Computed Tomography (CT Scan)
Skills/Learning Objectives	 BIG IDEA 6: Waves can transfer energy and momentum from one location to another without the permanent transfer of mass and serve as a mathematical model for the description of other phenomena. 6.A.1.2: The student is able to describe representations of transverse and longitudinal waves. [SP 1.2] 6.A.1.3: The student is able to analyze data (or a visual representation) to identify patterns that indicate that a particular mechanical wave is polarized and construct an explanation of the fact that the wave must have a vibration perpendicular to the direction of energy propagation. [SP 5.1, 6.2] 6.A.2.2: The student is able to contrast mechanical and electromagnetic waves in terms of the need for a medium in wave propagation. [SP 6.4, 7.2] 6.B.3.1: The student is able to construct an equation relating the wavelength and amplitude of a wave from a graphical representation of the electric or magnetic field value as a function of position at a given time instant and vice versa, or construct an equation relating the frequency or period and amplitude of a wave from a graphical representation of the electric or waves. [SP 1.5] 6.C.1.1: The student is able to construct representation so the electric or system that is able to make claims and predictions about the net disturbance that occurs when two waves overlap. Examples should include standing waves. [SP 6.4, 7.2] 6.C.1.2: The student is able to make claims and predictions about the net disturbance that occurs when two waves overlap. Examples should include standing waves. [SP 1.4] 6.C.2.1: The student is able to make claims about the diffraction pattern produced when a wave passes through a small opening, and to qualitatively apply the wave model to quantities that describe the generation of a diffraction pattern when a wave passes through an opening whose dimensions are comparable to the wavelength of the wave. [SP 1.4, 6.4, 7.2]

-	6.C.3.1: The student is able to qualitatively apply the wave
	model to quantities that describe the generation of
	interference patterns to make predictions about interference
	patterns that form when waves pass through a set of openings
	whose spacing and widths are small compared to the
	wavelength of the waves [SP 1 4 6 4]
_	60.41. The student is able to predict and explain using
	representations and models the ability or inability of wayes to
	transfer energy around corners and hohind obstacles in terms
	of the differentian property of ways in cituations involving
	of the unifaction property of waves in situations involving
	various kinds of wave phenomena, including sound and light.
	[SF 0.4, 7.2] (E 1.1. The student is able to make gloing using connections
-	0.E.1.1: The student is able to make claims using connections
	across concepts about the benavior of light as the wave travels
	from one medium into another, as some is transmitted, some is
	reflected, and some is absorbed. [SP 6.4, 7.2]
-	6.E.2.1: The student is able to make predictions about the
	locations of object and image relative to the location of a
	reflecting surface. The prediction should be based on the
	model of specular reflection with all angles measured relative
	to the normal to the surface. [SP 6.4, 7.2]
-	6.E.3.1: The student is able to describe models of light traveling
	across a boundary from one transparent material to another
	when the speed of propagation changes, causing a change in
	the path of the light ray at the boundary of the two media. [SP
	1.1, 1.4]
-	6.E.3.2: The student is able to plan data collection strategies as
	well as perform data analysis and evaluation of the evidence
	for finding the relationship between the angle of incidence and
	the angle of refraction for light crossing boundaries from one
	transparent material to another (Snell's law). [SP 4.1, 5.1, 5.2,
	5.31
-	6.E.3.3: The student is able to make claims and predictions
	about path changes for light traveling across a boundary from
	one transparent material to another at non-normal angles
	resulting from changes in the speed of propagation [SP 6.4
	7 2]
_	LOGE 4.1. The student is able to plan data collection
	strategies and perform data analysis and evaluation of
	evidence about the formation of images due to reflection of
	light from curved spherical mirrors [SP 3.2, 4.1, 5.1, 5.2, 5.3]
_	Ight if one curved spherical mirrors. [51–5.2, \pm .1, 5.1, 5.2, 5.5]
-	auglitative representations and models to analyze situations
	and solve problems about image formation occurring due to
	the reflection of light from surfaces [SD 1.4, 2.2]
	the reflection of light from surfaces. [SF 1.4, 2.2] $I = I = I = I$
-	LO O.E. 5.1: The student is able to use quantitative and
	quantative representations and models to analyze situations
	and solve problems about image formation occurring due to
	the refraction of light through thin lenses. [SSP 1.4, 2.2]
-	LU 6.E.5.2: The student is able to plan data collection
	strategies, perform data analysis and evaluation of evidence,
	and refine scientific questions about the formation of images
	due to refraction for thin lenses. [SP 3.2, 4.1, 5.1, 5.2, 5.3]

	 6.F.1.1: The student is able to make qualitative comparisons of the wavelengths of types of electromagnetic radiation. [SP 6.4, 7.2] 6.F.2.1: The student is able to describe representations and models of electromagnetic waves that explain the transmission of energy when no medium is present. [SP 1.1] 			
Assessments	- Teacher evaluation of special projects			
	- UllZZES and chapter tests - Homework /class work assignments			
	- Fyneriments /lab reports			
	- Weekly projects			
Interventions/	 Provide advanced notice for tests 			
differentiated	 Present materials suitable to student's level of functioning 			
	 Include hands on activities Provide options for independent study 			
Instruction				
Lesson	- Hands on activities			
resources/Activities	 Laboratory exercises related to subject matter 			
	Wave Interference			
	Polarization Simulation			
	 Real-World Use of Electromagnetic Radiation 			
	Mirrors Investigation			
	Concave Mirror Investigation			
	 Index of Refraction Investigation 			
	Thin Lenses Investigation			
	Conflicting Contentions			
	Double-Slit Interference and Diffraction Investigations			
	Human Eye Investigation (Lab Practicum)			
	 Chapter study guides 			
	- Oral presentation of chapter concepts			

Pine Hill Public Schools Science Curriculum			
Unit Title: Quantum, Atomic, and Nuclear		Unit #7	
Physics			
Course or Grade Level: AP Physics 2		Length of Time: 6 weeks	
NGSS Performance	- HS-PS1-1. U	se the periodic table as a model to predict	
Expectations (PE's)	the relative proper	ties of elements based on the patterns of	
	electrons in the ou	termost energy level of atoms.	
	- HS-PS1-2. Co	onstruct and revise an explanation for the	
	outcome of a simpl	e chemical reaction based on the outermost	
	electron states of a	toms, trends in the periodic table, and	
	knowledge of the p	atterns of chemical properties.	
	- HS-PS1-3. P	an and conduct an investigation to gather	
	evidence to compa	re the structure of substances at the bulk	
	scale to infer the st	rength of electrical forces between particles.	
	- HS-PSI-4. D	evelop a model to illustrate that the release	
	depends upon the	shanges in total hand energy	
		changes in total bond energy.	
	the claim that atom	se and therefore mass are conserved during	
	a chemical reaction	n	
	- HS-PS1-8 D	evelop models to illustrate the changes in	
	the composition of	the nucleus of the atom and the energy	
	released during the	e processes of fission, fusion, and radioactive	
	decay.	r	
	- HS-PS2 Motion and	l Stability: Forces and Interactions	
	- 2-1. Analyze da	ata to support the claim that Newton's	
	second law of moti	on describes the mathematical relationship	
	among the net force	e on a macroscopic object, its mass, and its	
	acceleration.		
	- HS-PS2-2. U	se mathematical representations to support	
	the claim that the t	otal momentum of a system of objects is	
	conserved when th	ere is no net force on the system.	
	- HS-PS2-3. A	pply scientific and engineering ideas to	
	design, evaluate, an	nd refine a device that minimizes the force	
	on a macroscopic o	bject during a collision.*	
	- HS-PS2-4. U	se mathematical representations of	
	Newton's Law of G	ravitational and cloutomb s Law to describe	
	and predict the gra	ivitational and electrostatic forces between	
		an and conduct an investigation to provide	
	evidence that an el	ectric current can produce a magnetic field	
	and that a changin	g magnetic field can produce an electric	
	current.	5 magnetie nera can produce un ciccure	

	- HS	S-PS2-6. Communicate scientific and technical	
	in	formation about why the molecular-level structure is	
	in	nportant in the functioning of designed materials.*	
	- HS	S-PS3-1 Create a computational model to calculate the	
	ch	hange in the energy of one component in a system when the	
	ch	hange in energy of the other component(s) and energy flows	
	in	n and out of the system are known.	
	- HS	S-PS3-2. Develop and use models to illustrate that	
	en	nergy at the macroscopic scale can be accounted for as a	
	со	ombination of energy associated with the motions of particles	
	(o	objects) and energy associated with the relative positions of	
	pa	articles (objects).	
	- HS	S-PS3-3. Design, build, and refine a device that works	
	w	vithin given constraints to convert one form of energy into	
	an	nother form of energy.*	
	- HS	S-PS3-4. Plan and conduct an investigation to provide	
	ev	vidence that the transfer of thermal energy when two	
	со	omponents of different temperature are combined within a	
	cle	osed system results in a more uniform energy distribution	
	an	mong the components in the system (second law of	
	th	nermodynamics).	
	- HS	S-PS3-5. Develop and use a model of two objects	
	in	nteracting through electric or magnetic fields to illustrate the	
	fo	prces between objects and the changes in energy of the	
	ob	bjects due to the interaction.	
	- HS	S-PS4 Waves and their Applications in Technologies for	
	In	nformation Transfer	
	- HS	- HS-PS4-1. Use mathematical representations to support	
	a	a claim regarding relationships among the frequency,	
	w	wavelength, and speed of waves traveling in various media.	
	- H	S-PS4-2. Evaluate questions about the advantages of	
	us	sing a digital transmission and storage of information.	
	- H3	S-PS4-3. Evaluate the claims, evidence, and reasoning	
	De	ening the idea that electromagnetic radiation can be	
	de fo	escribed either by a wave model or a particle model, and that	
	10	Solution Situations one model is more useful than the other.	
	- H3	D-F 54-4. Evaluate the valuaty and reliability of claims	
	III of	f electromagnetic radiation have when absorbed by matter	
	- H	S-PS4-5 Communicate technical information about	
	h	ow some technological devices use the principles of wave	
	he	ehavior and wave interactions with matter to transmit and	
	ca	apture information and energy.*	
Cross Cutting Concepts		Science and Engineering Practices	
⊠Patterns		Asking questions and defining problems	
⊠Cause and Effect		\square Developing and using models	
\boxtimes Scale. Proportion, and Quantity		Planning and carrying out investigations	
\boxtimes Systems and Systems Models		\square Analyzing and interpreting data	
Systems and Systems Models		Ilising mathematics and computational thinking	
☐ Energy and Matter In Systems		Constructing evaluations and designing solutions	
⊠ Structure and Function		Engaging in argument from avidence	
☐ Stability and Change in Systems		Debtaining analysisting and communicating	
Nature of Science	(NOS)	information	
\square NOS-Science is a Way of	f Knowing		
\boxtimes NUS-Science is a Way of Knowing			

⊠NOS-Scientific Knowled	lge Assumes an	Nature of Science (NOS)	
Order and Consistency in Natural		Scientific Investigations Use a Variety of Methods	
Systems		Scientific Knowledge is Based on Empirical	
⊠NOS-Science is a Human Endeavor		Evidence	
⊠NOS-Science Addresses Ouestions		Scientific Knowledge is Open to Revision in Light of	
About the Natural and Ma	terial World	New Evidence	
		Scientific Models, Laws, Mechanisms, and Theories	
		Explain Natural Phenomena	
		Explain Natara Phenomena	
Content	Structure and Properties of the Nucleus		
Content	Binding Energy	and Nuclear Forces	
	- Radioactivity		
	- Alpha l	Decay	
	- Beta D	ecay	
	- Gamma	a Decay	
	- Conser	vation of Nucleon Number and	
	- Other C	Conservation Laws	
	- Half-Li	fe and Rate of Decay	
	- Calcula	tions Involving Decay Rates and Half-Life	
	- Decay	Series	
	- Radioa	ctive Dating	
	- Stabilit	y and Tunneling	
	- Detecti	on of Particles	
	- Nuclear	r Reactions and the Transmutation of Elements	
	- Nuclear	r Fission: Nuclear Reactors	
	- Nuclear	r Fusion	
	- Passage	e of Radiation Through Matter; Biological Damage	
	- Measur	ement of Radiation Dosimetry	
	- Radiation Therapy		
	- Tracers in Research and Medicine		
	- Emissio	on Tomography: PET and SPECT	
	- Nuclear	r Magnetic Resonance (NMR) and Magnetic Resonance	
	Imagin	g (MRI)	
	- High-E	nergy Particles and Accelerators	
	- Beginn	ings of Elementary Particle	
	- Physics	-Particle Exchange	
	- Particle	es and Antiparticles	
	- Particle	e interactions and Conservation Laws	
	- Neutrin	IUS	
	- Particle	Classification	
	- Farucie	Diautity and Resonances	
	- Suange	ness: Charm: Is a New Model	
	- Toward		
	- The Ste	undard Model: OCD and Electroweak Theory	
	- The Sta	Unified Theories	
	- Stringe	and Supersymmetry	
	Possibly Touch	unon these tonics.	
	Galilaa	n-Newtonian Relativity	
		n new coman neurinty	
	• rostula	tivity	
	• OI Kela		
Simulta Time D Length		alleny	
		nation and the Twin Paradox	
		Contraction	

	•	Four-Dimensional Space-Time		
		The Illtimate Speed		
		$F = mc^2$: Mass and Fnergy		
		Relativistic Addition of Velocities		
		The Impact of Special Polativity		
		Discovery and Properties of the Electron		
		Blackbody Padiation:		
		Planck's Quantum Hypothesis		
		Photon Theory of Light and the Photoelectric Effect		
		Energy Mass and Momentum of a Photon		
		Compton Effect		
		Photon Interactions: Dair Production		
		Waya Particle Duality: the Principle of Complementarity		
		Wave-1 aftere Duanty, the 1 metple of Complementarity		
		Flectron Microscones		
		Eaction where solves Farly Models of the Atom		
		Atomic Spectre: Key to the Structure of the Atom		
		The Bohr Model		
		de Broglie's Hypothesis Applied to Atoms		
		Quantum Mechanics—A New Theory		
		The Wave Function and Its Interpretation:		
		the Double-Slit Experiment		
		The Heisenberg Uncertainty Principle		
		Philosophic Implications:		
		Probability versus Determinism		
	•	Cuantum-Mechanical View of Atoms		
	•	 Quantum Mechanics of the Hydrogen Atom. Ouantum Numbers. 		
	•	Multielectron Atoms: the Exclusion Principle		
	•	The Periodic Table of Elements		
Skills /Learning	-	BIG IDEA 1: Objects and systems have properties such as mass		
Objectives		and charge. Systems may have internal structure.		
Objectives	-	1.A.2.1: The student is able to construct representations of the		
		differences between a fundamental particle and a system		
		composed of fundamental particles and to relate this to the		
		properties and scales of the systems being investigated. [SP		
		1.1, 7.1]		
	-	1.A.4.1: The student is able to construct representations of the		
		energy-level structure of an electron in an atom and to relate		
		this to the properties and scales of the systems being		
		investigated. [SP 1.1, 7.1]		
	-	1.C.4.1: The student is able to articulate the reasons that the		
		theory of conservation of mass was replaced by the theory of		
		conservation of mass-energy. [SP 6.3]		
	-	1.D.1.1: The student is able to explain why classical mechanics		
		cannot describe all properties of objects by articulating the		
		reasons that classical mechanics must be refined and an		
		alternative explanation developed when classical particles		
		display wave properties. [SP 6.3]		

- 1.D.3.1: The student is able to articulate the reasons that classical mechanics must be replaced by special relativity to describe the experimental results and theoretical predictions that show that the properties of space and time are not absolute. [Students will be expected to recognize situations in which nonrelativistic classical physics breaks down and to explain how relativity addresses that breakdown, but students will not be expected to know in which of two reference frames a given series of events corresponds to a greater or lesser time interval, or a greater or lesser spatial distance; they will just need to know that observers in the two reference frames can "disagree" about some time and distance intervals.] [SP 6.3, 7.1]
 BIG IDEA 5: Changes that occur as a result of interactions are constrained by conservation laws. 5.B.8.1: The student is able to describe emission or absorption spectra associated with electronic or nuclear transitions as transitions between allowed energy states of the atom in terms of the principle of energy conservation, including characterization of the frequency of radiation emitted or absorbed. [SP 1.2, 7.2] 5.B.11.1: The student is able to apply conservation of mass and conservation of energy concepts to a natural phenomenon and use the equation E = mc2 to make a related calculation. [SP 2.2, 7.2] 5.C.1.1: The student is able to analyze electric charge conservation for nuclear and elementary particle reactions and make predictions related to such reactions based upon conservation of charge. [SP 6.4, 7.2] 5.D.1.6: The student is able to make predictions of the dynamical properties of a system undergoing a collision by application of the principle of linear momentum conservation and the principle of the conservation of energy in situations in which an elastic collision may also be assumed. [SP 6.4] 5.D.2.7: The student is able to classify a given collision situation as elastic or inelastic, justify the selection of conservation of linear momentum and restoration of kinetic energy as the appropriate principles for analyzing an elastic collision, solve for missing variables, and calculate their values. [SP 2.1, 2.2] 5.D.2.5: The student is able to classify a given collision situation as elastic or inelastic, justify the selection of conservation of linear momentum as the appropriate solution method for an inelastic collision, recognize that there is a common final velocity for the colliding objects in the totally inelastic case, solve for missing variables, and calculate their values. [SP 2.1, 2.2] 5.D.2.6: The student is able to apply the conservation of linear momentum to a closed system of objects involved in an
inelastic collision to predict the change in kinetic energy. [SP 6.4, 7.2]

 5.D.3.2: The student is able to make predictions about the velocity of the center of mass for interactions within a defined one-dimensional system. [SP 6.4]
- 5.D.3.3: The student is able to make predictions about the velocity of the center of mass for interactions within a defined two-dimensional system [SP 6.4]
- 5.G.1.1: The student is able to apply conservation of nucleon
number and conservation of electric charge to make
fusion, alpha decay, beta decay, or gamma decay. [SP 6.4]
- BIG IDEA 6: Waves can transfer energy and momentum from one location to another without the permanent transfer of mass and serve as a mathematical model for the description of
other phenomena. - 6 F 3 1: The student is able to support the photon model of
radiant energy with evidence provided by the photoelectric effect. [SP 6.4]
- 6.F.4.1: The student is able to select a model of radiant energy that is appropriate to the spatial or temporal scale of an interaction with matter. [SP 6.4, 7.1]
 6.G.1.1: The student is able to make predictions about using the scale of the problem to determine at what regimes a particle or wave model is more appropriate. [SP 6.4, 7.1]
- 6.G.2.1: The student is able to articulate the evidence
supporting the claim that a wave model of matter is
appropriate to explain the diffraction of matter interacting with a crystal, given conditions where a particle of matter has momentum corresponding to a de Broglie wavelength smaller than the separation between adjacent atoms in the crystal. [SP 6.1]
- 6.G.2.2: The student is able to predict the dependence of major features of a diffraction pattern (e.g., spacing between
Interference maximal, based upon the particle speed and de Broglie wavelength of electrons in an electron beam
interacting with a crystal. (de Broglie wavelength need not be given, so students may need to obtain it.) [SP 6.4]
- BIG IDEA 7: The mathematics of probability can be used to describe the behavior of complex systems and to interpret the behavior of quantum mechanical systems
- 7.C.1.1: The student is able to use a graphical wave function
representation of a particle to predict qualitatively the
probability of finding a particle in a specific spatial region. [SP 1.4]
 7.C.2.1: The student is able to use a standing wave model in which an electron orbit circumference is an integer multiple of the de Broglie wavelength to give a qualitative explanation that accounts for the existence of specific allowed energy states of
an electron in an atom. [SP 1.4]
- 7.C.3.1: The student is able to predict the number of
radioactive nuclei remaining in a sample after a certain period
gamma) in a radioactive decay. [SP 6.4]

	 7.C.4.1: The student is able to construct or interpret representations of transitions between atomic energy states involving the emission and absorption of photons. [For questions addressing stimulated emission, students will not be expected to recall the details of the process, such as the fact that the emitted photons have the same frequency and phase as the incident photon; but given a representation of the process, students are expected to make inferences such as figuring out from energy conservation that since the atom loses energy in the process, the emitted photons taken together must carry more energy than the incident photon.] [SP 1.1, 1.2] 		
Assessments	 Teacher evaluation of special projects Quizzes and chapter tests Homework/class work assignments Experiments/lab reports Weekly projects 		
Interventions/ differentiated instruction	 Provide advanced notice for tests Present materials suitable to student's level of functioning Include hands on activities Provide options for independent study 		
Lesson resources/Activities	 Hands on activities Laboratory exercises related to subject matter Atomic Structure Review Models of the Hydrogen Atom Spectroscopy Investigation Modern Physics — Graphing Analysis Laser Research Project Photoelectric Effect Simulation Photoelectric Effect Investigation #2 Diffraction of Matter Quantum Mechanics Simulations Quantum Wave Interference Simulation Relativity Research Paper and Presentation Radioactive Decay Simulations and Investigation Radioactive Decay and Nuclear Reaction Problems Research and Debate on Nuclear Energy Chapter study guides Oral presentation of chapter concepts 		

Pine Hill Public Schools Science Curriculum				
Unit Title: Astrophysics and Cosmology (Ch		Unit #8		
33)				
Course or Grade Level: AP Physics 2		Length of Time: 2.5 weeks		
NGSS Performance	HS-ESS1 Earth'	s Place in the	Universe	
Expectations (PE's)	HS-ESS1-1. Develop a model based on evidence to illustrate the			
	life span of the sun and the role of nuclear fusion in the sun's core to			
	release energy	that eventua	lly reaches Earth in the form of radiation.	
	HS-ESS1-2.	Construct a	in explanation of the Big Bang theory based	
	on astronomica	l evidence of	light spectra, motion of distant galaxies,	
	and compositio	n of matter i	n the universe.	
	 HS-ESS1-3. Communicate scientific ideas about the way stars, over their life cycle, produce elements. HS-ESS1-4. Use mathematical or computational representations to predict the motion of orbiting objects in the solar system. HS-ESS1-5. Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to 			
	explain the ages	s of crustal ro	OCKS.	
	HS-ESSI-6.	Apply scier	itific reasoning and evidence from ancient	
	Earth materials, meteorites, and other planetary surfaces to construct			
	III account of Earth's formation and early instory.			
	HS-ESS2-4. Use a model to describe now variations in the flow of			
	the result in changes in chimate.			
	ПЭ-ESSZ-S.	Plan anu cu	h materials and surface processes	
	water and its el	iects on Eart	ii materiais anu surface processes.	
	HS-FSS2-7	Construct	in argument based on evidence about the	
	simultaneous co	n-evolution o	of Farth's systems and life on Earth	
Cross Cutting Concepts	Simulaneous	Science and	l Engineering Practices	

⊠Patterns		⊠Asking questions and defining problems		
⊠Cause and Effect		⊠ Developing and using models		
\boxtimes Scale, Proportion, and Quantity		⊠Planning and carrying out investigations		
Systems and Systems Models		⊠Analyzing and interpreting data		
⊠Energy and Matter in Sy	/stems	⊠Using mathematics and computational thinking		
Structure and Function		⊠Constructing explanations and designing solutions		
⊠Stability and Change in	Systems	□Engaging in argument from evidence		
		⊠Obtaining, evaluating, and communicating		
Nature of Science	e (NOS)	information		
⊠NOS-Science is a Way of Knowing				
⊠NOS-Scientific Knowledge Assumes an		Nature of Science (NOS)		
Order and Consistency in Natural		⊠Scientific Investigations Use a Variety of Methods		
Systems		⊠Scientific Knowledge is Based on Empirical		
⊠NOS-Science is a Human Endeavor		Evidence		
⊠NOS-Science Addresses Questions		⊠Scientific Knowledge is Open to Revision in Light of		
About the Natural and Ma	terial World	New Evidence		
		Scientific Models, Laws, Mechanisms, and Theories		
		Explain Natural Phenomena		
Combout	Store or	od Gelavias		
content	- Stellar Evolution: Birth and Death			
	- of Stars, Nucleosynthesis			
	- Distance Measurements			
	- General	Relativity: Gravity and the		
	- Curvatu	ire of Space		
	- The Exp	panding Universe: Redshift and		
	- Hubble	's Law		
	- The Big	g Bang and the Cosmic		
	- Microw	ave Background		
	- I ne Standard Cosmological Model: - Early History of the Universe			
	- Inflatio	n: Explaining Flatness.		
	- Uniform	nity, and Structure		
	- Dark M	latter and Dark Energy		
	- Large-S	Scale Structure of the Universe		
	- Finally			
Skills/Learning				
Objectives				
Assessments	- Teacher evaluation of special projects			
	- Quizzes and chapter tests			
	 Homework/class work assignments 			
	- Experiments/lab reports			
T /	- Weekly projects			
Interventions/	- Provide advanced notice for tests			
differentiated	 Present materials suitable to student s level of functioning Include hands on activities 			
instruction	 Provide ontions for independent study 			
Lesson	- Hands on activities			
resources / Activities	- Labora	- Laboratory exercises related to subject matter		
resources/ Activities	•	Research stellar formation		
	•	Dark matter lab		
	Open Project			
	•	Write a program using Newton's Gravitation law		

 Chapter study guides Oral presentation of chapter concepts

Pi	ience Curriculum			
Unit Title: Final Projects		Unit #9		
Course or Grade Level: AP Physics 2		Length of Time: 2.5 weeks		
NGSS Performance	NOTE: Student projects may	touch upon any or all of the Next		
Expectations (PE's)	Generation Science Standards			
	- HS-PS1 Matter and its Interactions			
	- HS-PS1-1. Us	e the periodic table as a model to predict		
	the relative proper	ties of elements based on the patterns of		
	electrons in the out	ermost energy level of atoms.		
	- HS-PS1-2. Co	instruct and revise an explanation for the		
	outcome of a simple chemical reaction based on the outermos electron states of atoms, trends in the periodic table, and			
	knowledge of the p	atterns of chemical properties.		
	- HS-PS1-3. PI	an and conduct an investigation to gather		
	evidence to compar	re the structure of substances at the bulk		
	scale to infer the st	rength of electrical forces between particles.		
	- HS-PS1-4. De	evelop a model to illustrate that the release		
	or absorption of energy from a chemical reaction system			
		inanges in total bond energy.		
	- IIS-PSI-5. Al	tion about the offects of abonging the		
	provide all explaina	tion about the effects of changing the		
	rete et which a read	tion occurs		
		fine the design of a chemical system by		
	- 113-131-0. Ke	in conditions that would produce		
	increased amounts	of products at equilibrium *		
		or products at equilibrium.		
	the claim that atom	s and therefore mass are conserved during		
	a chemical reaction			

- HS-PS1-8. Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.
 HS-PS2 Motion and Stability: Forces and Interactions 2-1. Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship amongthe net force on a macroscopic object, its mass, and its acceleration.
- HS-PS2-2. Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.
 HS-PS2-3. Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.*
- HS-PS2-4. Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between
 HS-PS2-5. Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric
 current. HS-PS2-6. Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials.*
 HS-PS3 Energy HS-PS3-1 Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.
- HS-PS3-2. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects).
 HS-PS3-3. Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.*
- HS-PS3-4. Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics).
- HS-PS3-5. Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.
 HS-PS4 Waves and their Applications in Technologies for Information Transfer

-	HS-PS4-1. Use mathematical representations to support
	a claim regarding relationships among the frequency,
	wavelength, and speed of waves traveling in various media.
-	HS-PS4-2. Evaluate questions about the advantages of
	using a digital transmission and storage of information.
-	HS-PS4-3. Evaluate the claims, evidence, and reasoning
	behind the idea that electromagnetic radiation can be
	described either by a wave model or a particle model, and that
	for some situations one model is more useful than the other.
-	HS-PS4-4. Evaluate the validity and reliability of claims
	in published materials of the effects that different frequencies
	of electromagnetic radiation have when absorbed by matter.
ł	HS-PS4-5. Communicate technical information about
	how some technological devices use the principles of wave
	behavior and wave interactions with matter to transmit and
	capture information and energy.*
-	HS-LS2 Ecosystems: Interactions, Energy, and Dynamics
-	HS-LS2-1. Use mathematical and/or computational
	representations to support explanations of factors that affect
	carrying capacity of ecosystems at different scales.
-	no-Lo2-2. Use mathematical representations to support
	and revise explanations based on evidence about factors
	different scales
	uniter the states. HS-LS2-3 Construct and ravies an ovalanation based on
-	evidence for the cycling of matter and flow of energy in acrobic
	and anaerohic conditions
_	HS-LS2-4. Use mathematical representations to support
	claims for the cycling of matter and flow of energy among
	organisms in an ecosystem.
-	HS-LS2-5. Develop a model to illustrate the role of
	photosynthesis and cellular respiration in the cycling of carbon
	among the biosphere, atmosphere, hydrosphere, and
	geosphere.
-	HS-LS2-6. Evaluate the claims, evidence, and reasoning
	that the complex interactions in ecosystems maintain
	relatively consistent numbers and types of organisms in stable
	conditions, but changing conditions may result in a new
	ecosystem.
-	HS-LS2-7. Design, evaluate, and refine a solution for
	reducing the impacts of human activities on the environment
	and biodiversity.*
-	HS-LS2-8. Evaluate the evidence for the role of group
	behavior on individual and species' chances to survive and
	reproduce.
	UC ECC1 Eauth's Diago in the University
-	no-Eool Earth S Place in the Universe
-	no-cool-1. Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion
	in the sun's core to release energy that eventually reaches
	Farth in the form of radiation
	HS-ESS1-2 Construct an explanation of the Rig Rang
	HS-ESS1-2. Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra motion

	- HS-ESS	S1-3. Communicate scientific ideas about the way	
	stars, over their life cycle, produce elements.		
	- HS-ESS1-4. Use mathematical or computational		
	representations to predict the motion of orbiting objects in the		
	solar system.		
	- HS-ESS1-5. Evaluate evidence of the past and current		
	nloven	ients of continental and oceanic crust and the theory of	
	plate tectonics to explain the ages of crustal rocks.		
	- HS-ESS1-6. Apply scientific reasoning and evidence from		
	ancient Earth materials, meteorites, and other planetary		
	surfaces to construct an account of Earth's formation and early		
Cross Cutting Concepts	Science and Engineering Practices		
⊠Patterns		\square Asking questions and defining problems	
\boxtimes Cause and Effect		Developing and using models	
Scale Proportion and Quantity		\boxtimes Planning and carrying out investigations	
Systems and Systems Models		\boxtimes Analyzing and interpreting data	
Systems and Systems Models		Illing mathematics and computational thinking	
Energy and Matter in Systems		\square Constructing combined in a computational timking	
Structure and Function			
\boxtimes Stability and Change in Systems			
		Ubtaining, evaluating, and communicating	
Nature of Science (NOS)		information	
NOS-Science is a way o	I Knowing	Nature of Colonge (NOC)	
NUS-Scientific Knowled	ige Assumes an	Nature of Science (NOS)	
Order and Consistency in	Natural	\boxtimes Scientific Investigations use a variety of Methods	
Systems			
⊠NOS-Science is a Human Endeavor			
⊠NUS-Science Addresses Questions		Scientific Knowledge is Open to Revision in Light of	
About the Natural and Material World		New Evidence	
		Scientific Models, Laws, Mechanisms, and Theories	
		Explain Natural Phenomena	
Content	- Final P	rojects	
Skills/Learning			
Objectives			
Accoccmonts	Teacher avaluation of special prejects		
Assessments	- Ouizze	s and chanter tests	
	- Homey	vork/class work assignments	
	- Experiments/lab reports		
	- Weekly	y projects	
Interventions/	- Provide advanced notice for tests		
differentiated	- Present materials suitable to student's level of functioning		
instruction	- Include	e hands on activities	
	- Provid	e options for independent study	
Lesson	- Hands	on activities	
resources/Activities	- Labora	tory exercises related to subject matter	
,	•	Student based research labs	
	Student presentations		
	Student stand alone project		
	- Chapte	r study guides	
	 Oral pr 	esentation of chapter concepts	

Resources

Textbook

Giancoli, Douglas C. Physics: Principles With Applications. Boston, MA: Pearson, 2014.

Equipment

- Computers
- Motion Detectors
- Internet
- Microsoft Office (Excel, Word, and PowerPoint)
- Multi-meters
- Breadboards
- Power Supplies
- Resistors, LED's, and Capacitors
- Logger Pro Software
- Capital or Budget for projects
- Calculators
- Stop watches
- Photo-gates and accompanying software
- Sticky tape, straws, pens, assorted cloth (wool, silk, fur), PVC rod, metal can, commercial electrostatics kit (optional
- "Electric Forces: Straws and Pens"
- "Electric Charges: Charges and Sticky Tape
- "An Electrostatics Puzzler
- Van de Graff generator, packing peanuts, polystyrene cup, string, paper towel, soap bubbles, aluminum foil, fluorescent tube
- Electroscope, electrophorus, strips of transparent acetate, strips of opaque vinyl, light- colored silk or cotton, dark- colored wool, PVC tube, metal tube
- Small balloons, string, analytical balance, meterstick
- DC power supply (6V output), digital multimeter, conductive ink, conductive paper, graph paper
- Small light bulbs, light bulb sockets, wires, batteries
- Assorted resistors or a variable resistor, batteries or DC power supply, wires, digital or analog voltmeter and ammeter
- Assorted resistors, capacitor, wires, batteries, digital multimeter or analog voltmeter and ammeter
- Assorted resistors, wires, batteries, digital multimeter or analog voltmeter and ammeter
- Web
- Castro, "Kirchhoff's Gambit"

- DC power supply, triple-beam balance, 12-inch dowels (with clips that are conducting and nonmagnetic), ring stand with three clamps and crossbar, three insulated wires and two alligator clips, magnetic compass, straight bare (uninsulated) wire, 0.5-ohm resistor (10 W), three horseshoe magnets clamped together (poles aligned)
- Commercial Boyle's law units, metal spheres, 1500 mL beakers, hot plates, thermometers, ice
- Plane mirrors, concave and convex mirrors, pins, rulers, protractors, light source
- Concave mirrors, screens, lit candles or other light sources, metersticks or commercial optic benches
- Acrylic blocks, commercial ray tables or printed protractors, light sources
- Converging lenses, diverging lenses, screens, light sources, metersticks or commercial optic benches
- Green lasers, red lasers, double slits, diffraction gratings, metersticks
- Converging lenses, diverging lenses, commercial eye model, rulers
- 10 cc low-friction glass syringe with ring stand support, flasks (test tube) with one-hole rubber stoppers, pressure sensors, temperature sensors, two insulated (e.g., polystyrene) containers, two 400 mL glass beakers, several lengths of Tygon tubing, paper towels, rulers, 50 g masses, hot water, ice water
- Triple-beam balance, beakers, graduated cylinders, two objects of different densities, liquid
- of unknown density, string, overflow cans
- Clear 2 L plastic bottle, water, ruler, stopwatch, compass or other sharp object (for creating a small opening in the bottle)
- Water fountain, beakers, stopwatch, ruler
- Commercial diffraction gratings, spectroscopes, commercial spectrum tubes (argon, chlorine, iodine, hydrogen), spectrum tube power supply

- LED color strip, ammeter, wires, variable power source, resistor (1 k ohm), digital camera (optional)
- Shoe box with lid; 80 pennies, dice, or sugar cubes; 80 paper clips; graph paper; marker
- Bar magnet, solenoid, galvanometer
- Commercial Boyle's law units, metal

spheres, 1500 mL beakers, hot plates, thermometers, ice3

 Shot plates, Vernier calipers, ice, plates of various materials (e.g., Masonite, aluminum, plexiglass, plywood, or Teflon)

Web access for the following virtual labs:

- o Wells, "Electric Potential and Potential Energy"
- Bertrand, "Conceptual Links in Electrostatics: Using a Visual Mnemonic for Electrostatic Relationships"
- "Charges and Fields" "Electric Field Hockey"
- Reif, "Modern-Day Faradays: Teaching Students to Visualize Electric Fields"
- o "The Nature of Resistance"
- o "Capacitor Lab"
- "Circuit Construction Kit (DC Only)"
- o "Magnet and Compass"
- Solenoid, batteries, magnetic compass (or a commercial magnaprobe)
- "Estimated Values of Magnetic Field"
- "Magnetic Force on a Current- Carrying Wire"
- "Faraday's Electromagnetic Lab"
- o "Gas Properties"
- o "States of Matter"
- Mooney, "The First Law of Thermodynamics and P-V Diagrams"
- "Balloons & Buoyancy"
- o "Polarised Wave"
- o "Wave Interference"
- o "Isotopes and Atomic Mass" "Build an Atom"
- o "Models of the Hydrogen Atom"
- "A CD Spectrometer"
- o Gende, "Graphing Analysis in Modern Physics"
- o "Lasers"
- "Photoelectric Effect"
- o "Quantum Tunneling and Wave Packets"
- o "Quantum Bound States"
- o "Quantum Wave Interference"
- o "Einstein Light"
- o "Alpha Decay" "Beta Decay"
- o "The Dating Game"